

Journal of Organometallic Chemistry 540 (1997) 61-65

Reaction of *trans*-[Pt(H)₂(PCy₃)₂] with C₆₀ Reductive elimination of H₂ and formation of [Pt(PCy₃)₂(η^2 -C₆₀)]

Luciano Pandolfo^{a,*}, Michele Maggini^b

^a Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Università di Padova, Via Marzolo 1, I-35131 Padova, Italy

^b Centro di Studio sui Meccanismi di Reazioni Organiche del CNR, Dipartimento di Chimica Organica, Università di Padova, Via Marzolo 1, I-35131 Padova, Italy

Received 25 October 1996; accepted 7 January 1997

Abstract

Reaction of trans-[Pt(H)₂(PCy₃)₂], 1, with [60]fullerene at room temperature affords [Pt(PCy₃)₂(η^2 -C₆₀)], 2, in nearly quantitative yield. The most probable reaction pattern is the insertion of a fullerene 6,6 junction onto a Pt-H bond yielding an η^1 alkyl derivative which, after hydrogen extrusion, gives 2. On the other hand, addition of 1 to different electron-deficient olefins, such as dimethyl maleate and fumarate, furnishes mixtures of both η^1 metal-alkyl and η^2 metal-olefin derivatives. If tetrachloroethylene is used as 2π component, trans-[PtCl(H)(PCy₃)₂] forms exclusively. © 1997 Elsevier Science S.A.

Keywords: Reductive elimination; Tetrachloroethylene

1. Introduction

The chemistry of the fullerenes has developed into a fascinating field over the past six years. Much of the synthetic work has been performed on [60]fullerene, the most abundant representative of the fullerene family, and synthetic methodologies have been developed that allow the preparation of a wide variety of C_{60} derivatives with interesting magnetic, electronic and photophysical properties [1].

The chemical reactivity of C_{60} is typical of an electron-poor olefin. C_{60} , in fact, reacts readily with neutral and charged nucleophiles, radical species, carbenes and is a reactive 2π component in thermal and photochemical cycloadditions [1,2]. C_{60} forms η^2 complexes with several electron-rich transition metals, such as Pt, Pd, Ni, Rh and Ir, ¹ and undergoes hydroboration and hydrozirconation reactions [10,11].

The addition of $[Zr(\eta^5-C_5H_5)_2Cl(H)]$ to C_{60} [11], followed by hydrolysis, leads to a mixture of hydro-fullerenes $C_{60}H_{2n}$ (n = 1, 2, 3). Although insertion of C_{60} into the Zr-H bond could be reasonably supposed,

 η^1 alkyl intermediates have never been isolated. Attempts to obtain η^1 derivatives were unsuccessful also with the hydrogenation catalyst [RhH(CO)(PPh_3)_3] that, in presence of C₆₀, eliminates PPh₃ to give η^2 derivative [Rh(H)CO(PPh_3)_2(\eta^2-C_{60})] [8] (Scheme 1).

Transition metal hydrides can undergo insertion reaction by unsaturated compounds giving η^1 metal derivatives. In particular, *trans*-[Pt(H)₂(PCy₃)₂], **1**, reacts readily with CO₂ [12], CS₂ [13], C₃O₂ [14,15], F₂C=CF₂ [16] and RC=CR' [17] to afford stable *trans*-[Pt(η^1 -UnsH)(H)(PCy₃)₂] complexes (Uns indicates the unsaturated compound used).

We report here on the unusual behavior of *trans*-dihydride 1 which in presence of C₆₀ gives exclusively the Pt(0) complex [Pt(PCy₃)₂(η^2 -C₆₀)], 2, (Eq. (1)). The study of the reactivity of dihydride 1 has also been extended to other electron-deficient olefins, such as dimethyl maleate, dimethyl fumarate and tetrachloroethylene.

Corresponding author. E-mail: pandolfo@chim02.chin.unipd.it.

¹ For a recent review see Ref. [3]; see also Refs. [4-9].

⁰⁰²²⁻³²⁸X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. PII S0022-328X(97)00081-8

2. Experimental section

2.1. Instrumentation and materials

All reactions and manipulations were carried out under an atmosphere of dry argon with standard Schlenk techniques. *trans*-[Pt(H)₂(PCy₃)₂], 1, was synthesized according to Ref. [18]. C_{60} (99.5%) was purchased from Bucky-USA. Dimethyl maleate, dimethyl fumarate and tetrachloroethylene were purchased from Aldrich and used without further purification. Solvents were distilled before use.

UV-vis absorption spectra were taken on a Perkin-Elmer Lambda 6 spectrophotometer. ¹H, ³¹P and ¹³C NMR spectra were recorded on Bruker AC 200 and AC 250 spectrometers. Chemical shifts are given in parts per million (δ) relative to tetramethylsilane (¹H, ¹³C) and to external 85% H₃PO₄ (³¹P). Positive ion FAB mass spectrum of 2 was obtained on a VG ZAB2F instrument by bombarding a mull of 2 in *m*-nitrobenzylalcohol with 8 keV Xe atoms. Elemental analyses were provided by the Microanalysis Laboratory of the CIMA Department of the University of Padova.

2.2. Synthesis

2.2.1. Reaction of trans- $[Pt(H)_2(PCy_3)_2]$, 1, with C_{60} . Synthesis of 2

A solution of 53 mg (0.07 mmol) of 1, [18] and 50 mg (0.07 mmol) of C₆₀ in 40 ml of toluene was sonicated for 10 min and then stirred at room temperature for 3 h. The deep green mixture was filtered with suction over a pad of silica gel and the solvent removed under reduced pressure affording 84 mg (81%) of 2. Crystallization from diethyl ether gave 75 mg (72%) of greenish, microcrystalline material.

2: m.p. > 200 °C (dec). ¹H NMR (200 MHz, C_6D_6) $\delta 1.22-2.51$ (m, C_6H_{11}); ¹³C NMR (62.5 MHz, C_6D_6) $\delta 135.3$, 141.9, 142.5, 142.9, 143.1, 143.2, 143.8, 143.9,

Table 1		
¹ H and ³¹ P{ ¹ H} NMR data for the reaction of 1 with	Ca	a

144.7, 144.9, 145.1, 145.3, 145.6, 147.3, 148.2, 160.4 (resonances due to C_6H_{11} are not reported). ³¹P{¹H} NMR (200 MHz, C_6D_6) δ 31.23 (s, ¹J_{P-Pt} = 3776 Hz). FAB-MS $C_{96}H_{66}P_2$ Pt (MW = 1475) m/z (%) 1475 (M⁺⁺, 1), 755 (Pt(PCy_3)₂⁺⁺, 100), 720 (C₆₀⁺⁺, 52). Anal. Calcd. for $C_{96}H_{66}P_2$ Pt: C, 78.08; H, 4.51. Found: C, 77.26; H, 4.23.

The course of the reaction was also monitored by ¹H and ³¹P{¹H} NMR. To 5 mg of 1 (6.6×10^{-3} mmol) dissolved in 1 ml of C₆D₆, 4.8 mg of C₆₀ (6.6×10^{-3} mmol) was added. The reaction took place after sonication, giving a deep green solution. ¹H and ³¹P{¹H} NMR spectra were registered before the addition of C₆₀, after 30 min and after 24 h. The results are reported in Table 1.

2.2.2. Reaction of trans- $[Pt(H)_2(PCy_3)_2]$, 1, with dimethyl maleate, 3, dimethyl fumarate, 4, and tetrachloroethylene, 5. General procedure

A solution of 15 mg (0.02 mmol) of 1 and one equivalent of the appropriate alkene in 1 ml of C_6D_6 was sealed in an NMR tube and heated to 50 °C. The course of the reactions was monitored by ³¹P(¹H) NMR, following the decreasing of the signal at 53.06 ppm (1) and

	¹ H ^b			³¹ P	
	H-Pt-H	$Pt-(\eta^1-C_{60}H)$	P-Pt-P	P'-Pt-P"	$P_2 \operatorname{Pt}(\eta^2 - C_{60})$
1	-3.06 (t) ² J _{H-P} = 16.4 ^J J _{H-Pt} = 798.7		53.06 (s) ${}^{1}J_{P-Pt} = 2866$		
$1 + C_{60}$ Solution after 30 min	-3.06 (t) ${}^{2}J_{H-P} = 16.4$ ${}^{1}J_{H-Pt} = 798.7$	5.74-6.14 °	53.06 (s) ${}^{1}J_{P-Pt} = 2866$	28.96–32.25 °	31.23 (s) ${}^{1}J_{P-Pt} = 3776$
$1 + C_{60}$ Solution after 24 h					31.23 (s) ${}^{1}J_{P-Pt} = 3776$

^a Solvent C_6D_6 , r.t., chemical shifts in ppm, J in Hz.

^b Signals due to C_6H_{11} are not reported.

^c Complex unresolved pattern.

Table 2 ${}^{31}P{}^{1}H$ NMR data for the reactions of 1 with 3 and 4

	P-Pt (1)	P-Pt $(\eta^1$ -insertion. deriv.)	$P-Pt = (\eta^2 - olefin deriv.)$
1+3	53.06 (s) ${}^{1}J_{P-Pt} = 2866$	32.54 (s) ${}^{1}J_{P-Pt} = 2812$	30.96(s) ${}^{1}J_{P-Pt} = 3713$
1+4	53.06 (s) ${}^{1}J_{P-Pt} = 2866$	32.61 (s) ${}^{1}J_{P-Pt} = 2851$	31.08 (s) ${}^{1}J_{P-Pt} = 3715$

^a Solvent C₆D₆, r.t., chemical shifts in ppm, J in Hz.

the appearance of new signals. In the reaction of 1 with 5 at 50 °C, compound 1 was consumed almost quantitatively with formation of an intense singlet at 38.05 ppm, $({}^{1}J_{P-Pt} = 2814 \text{ Hz})$ attributed to *trans*-[PtCl(H)(PCy₃)₂] by comparison with an authentic sample [18]. In the reaction with 3 and 4 two new resonances were detected along with that due to some unreacted 1. Raising the reaction temperature to 60 °C caused only decomposition and formation of Pt metal. Data are reported in Table 2.

3. Results and discussion

Addition of one equivalent of C_{60} to a benzene solution of 1 produces a greenish solution, that darkens with time. A deep green color has been observed also for different, 1:1, η^2 - C_{60} derivatives obtained by addition of C_{60} to Pt(0) [4,6], Pd(0) [7], Rh(I) [8], and Ir(I) [9] complexes.

Filtration of the raw material through a pad of silica gel followed by concentration of the filtrate, gave compound 2 in almost quantitative yield.

The UV-vis spectrum of 2 presents small changes with respect to that of pristine C_{60} . In particular, there is a difference in the relative intensity of the main electronic transitions, a splitting of that at 330 nm and a new transition around 430 nm. Transitions at 445 nm and 439 nm have been reported for $[Pt(PPh_3)_2(\eta^2-C_{60})]$ [19] and $[Pd(PPh_3)_2(\eta^2-C_{60})]$ [7] respectively.

The IR spectrum shows the absence of any distinctive Pt-H stretching signals in the range $2400-1600 \text{ cm}^{-1}$ [18].

The ¹H NMR spectrum of compound 2 exhibits a set of resonances due to PCy₃ and no signals attributable to H-Pt, in the typical range of platinum(II) mono hydrides having a trans η^1 -carbon (-6 to -11 ppm) [14,17,20].

The ³¹P{¹H} NMR spectrum displays a singlet at 31.23 ppm flanked by Pt satellites (${}^{1}J_{P-Pt} = 3776$ Hz). The value of the ${}^{1}J_{P-Pt}$ coupling constant falls in the range reported for *cis*-Pt(0)(η^{2} -olefin) complexes such as [Pt(PPh_3)₂(η^{2} -C₆₀)] [4], [Pt(PPh_3)₂(η^{2} -C₂H₄)] [21] and [Pt(PCy₃)₂(η^{2} -C₂H₄)] [22], and largely differs from the values reported for 1 and other *trans*-

[PtX(H)(PCy₃)₂] compounds, such as trans-[Pt{ η^1 -C(CHO)CO}(H)(PCy₃)₂] [14], trans-[Pt(η^1 -F₂C-CF₂H)(H)(PCy₃)₂] [16], trans-[PtCl(H)(PCy₃)₂] [18] and trans-[Pt(Br)₂(PCy₃)₂] [23] (Table 3).

The ¹³C NMR spectrum of 2 shows 16 signals between 134 and 165 ppm. A similar set of resonances has been reported for [Pt(PEt_3)₂(η^2 -C₆₀)] [24].

These spectral results are compatible with η^2 coordination of a 6,6 junction of C₆₀ to platinum. The proposed structure is further supported by the FAB mass spectrum of 2 showing a weak molecular ion signal at m/z 1475, along with strong signals at m/z 755 [Pt(PCy₃)₂]⁺ and m/z 720 [C₆₀]⁺.

The formation of the η^2 derivative 2 poses a question on the mechanism of the reaction between 1 and C_{60} , that reasonably involves reductive elimination of H_2 . Although reductive elimination is a known process with platinum and other transition metals complexes, elimination of H₂ from compound 1 has been reported only in a few cases. As a matter of fact, compound 1 reacts with CO yielding the trinuclear platinum complex [Pt(PCy₃)CO]₃ [25] by hydrogen extrusion. If the reaction is carried out at -60 °C, cis-[Pt(PCy_3)_2(CO)_2] can be detected in solution [16]. Hydrogen evolution has also been observed either by thermal decomposition of 1 to $[Pt(PCy_3)_2]$ or by treatment of 1 with oxygen [16]. An interesting example, that might be related to the reaction of 1 with C₆₀, has been reported by Clark et al. [17]. They have found that trans- $[Pt(H)_2(PCy_3)_2]$ reacts with dimethyl acetylenedicarboxylate to afford the insertion product trans-[Pt(η^1 -RC=CRH)(H)(PCy₃)₂], (R = CO₂Me), along with traces of cis-[Pt(PCy₃)₂(η^2 - $RC \equiv CR$)]. However, mechanistic details have not been presented.

From a mechanistic viewpoint, two possible reaction pathways, leading to metal complex 2, can be distinguished. One pathway based on spontaneous elimination of hydrogen from 1 and one based on a C_{60} -Pt

Table 3 Comparison betweeen ${}^{31}P{}^{1}H$ NMR data of 2 and some related compounds

compounds			
Compound	δ (ppm)	$^{1}J_{P-Pt}$ (Hz)	Ref.
2	31.23	3776	This work
$[Pt(PPh_3)_2(\eta^2 - C_{60})]$	27.0	3936	[4]
$[Pt(PPh_3)_2(\eta^2 - C_2H_4)]$	34.8	3738	[21]
$[Pt(PCy_{1})_{2}(\eta^{2}-C_{2}H_{4})]$	42.0	3614	[22]
$trans-[Pt(H)_2(PCy_3)_2], (1)$	53.06	2866	This work ^a
trans-[Pt(η^1 -C(CHO)CO)(H)(PCy_3) ₂]	36.9	2740	[14]
trans-[Pt(η^1 -CF ₂ -CF ₂ H)(H)(PCy ₃) ₂]	36.9	2905	[16]
trans-[PtCl(H)(PCy ₃) ₂]	38.05	2814	This work ^a
trans- $[Pt(Br)_2(PCy_3)_2]$	13.4	2320	[23]
cis-[Pt(Br) ₂ (PCy ₃) ₂]	16.9	3585	[23]

^a Slightly different values are reported in literature, mainly depending on the solvents used.

pentacoordinated intermediate which may undergo further transformations.

Derivative 1 is quite stable in aromatic solvents at room temperature. Intuitively, spontaneous elimination of H_2 from 1, followed by coordination of C_{60} to the rather stable [Pt(PCy₃)₂] fragment [26] to yield compound 2, can be reasonably excluded.

The formation of pentacoordinated platinum adducts has been documented under certain circumstances [16].² Although the metal center in 1 is sterically crowded, C_{60} might approach Pt perpendicularly to the coordination plane to give a pentacoordinated Pt(II) intermediate. This may undergo H₂ reductive elimination to yield **2**, owing to steric encumbrances of fullerene and tricyclohexylphosphines. This route has been suggested in the reaction of C₆₀ with mercury-platinum compounds [19]. Alternatively, the coordinated C₆₀ may insert on a Pt-H bond, followed by H₂ elimination to yield [Pt(PCy₃)₂(η^2 -C₆₀)], **2** (Scheme 2). This pattern would be consistent with the acidic character of hydrogen atoms in hydrofullerenes. [28]

In order to clarify the formation pathway of 2, the course of the reaction has been monitored by ¹H and ³¹P{¹H} NMR spectroscopy (see Section 2 and Table 1). The ¹H NMR spectrum, recorded 30 min after mixing 1 and C_{60} , shows a complex cluster of weak resonances between 5.74 and 6.14 ppm; the expected resonances due to PCy₃, and a signal at -3.06 ppm due to *trans*-dihydride 1, which decreases with time.

The resonances around 6 ppm compare well with those recorded at 6.06 and 6.09 ppm for a solution of C_{60} and $[Zr(\eta^5-C_5H_5)_2Cl(H)]$, which has been attributed to fullerene hydrogen atoms in $[{Zr(\eta^5-C_5H_5)_2Cl}_{n}(\eta^1-C_{60}H_n)]$ intermediate [11].

The ³¹P{¹H} NMR spectrum, taken after 30 min as well, shows two singlets, at 53.06 ppm (${}^{1}J_{P-Pt} = 2866$ Hz, *trans*-dihydride 1) and at 31.23 ppm (${}^{1}J_{P-Pt} = 3776$ Hz, compound 2), along with a complex pattern between 28.96 and 32.25 ppm.

After 24 h, NMR spectra show only resonances due

to PCy_3 of compound 2 as a complex set of signals around 1.5 ppm (¹H) and the singlet at 31.23 ppm (³¹P).

These spectral findings would favour the pathway shown in Scheme 2.

The study of the reactivity of dihydride 1 has been extended to dimethyl maleate 3, dimethyl fumarate 4 and tetrachloroethylene 5 and the results compared with those obtained earlier with different electron-deficient olefins such as tetrafluoroethylene and tetracyanoethylene [16]. The former gives exclusively the η^1 insertion derivative trans-[Pt{ η^1 -CF₂-CF₂(H)}(H)(PCy_3)_2], whereas, at -60 °C, the latter inserts onto a Pt-H bond to give trans-[Pt{ η^1 -C(CN)₂-C(CN)₂H}(H)(PCy_3)_2] which, upon heating, eliminates HCN affording trans-[Pt{ η^1 -C(CN)=C(CN)_2}(H)(PCy_3)_2].

The reaction of complex 1 with dimethyl maleate has been carried out at 50 °C and monitored by ³¹P{¹H} NMR spectroscopy (see Section 2 and Table 2). The resonances at 32.54 ppm (${}^{1}J_{P-Pt} = 2812$ Hz) and at 30.96 ppm (${}^{1}J_{P-Pt} = 3713$ Hz) have been attributed to trans-[Pt{ η^{1} -CH(R)-CH₂R}(H)(PCy₃)₂], (R = CO₂Me) and to [Pt(PCy₃)₂(η^{2} -CH(R)=CHR)] respectively, mainly on the basis of P-Pt coupling constant values [29]. The η^{1}/η^{2} ratio, which 30 min after mixing 1 and 3 was 1.5, decreased with time. This would support the hypothesis that the η^{2} derivative originates from the corresponding η^{1} metal complex via H₂ reductive elimination. With dimethyl fumarate, only 20% conversion of dihydride 1 to the η^{1}/η^{2} mixture has been obtained.

With tetrachloroethylene, on the other hand, almost quantitative formation of *trans*-[PtCl(H)(PCy₃)₂] has been observed, similar to what occurs with different chlorinated compounds such as CHCl₃ or CCl₄.

4. Conclusions

trans-[Pt(H)₂(PCy₃)₂], **1**, reacts readily with C_{60} to afford exclusively [Pt(PCy₃)₂(η^2 -C₆₀)], **2**. ¹H and ³¹P NMR spectra showed that the η^2 olefin complex most probably forms by reductive elimination of hydrogen from a transient η^1 monoinsertion intermediate. The unique C_{60} nature and geometry is probably responsible of the peculiar behavior of **1** which, in the presence of other electron-deficient olefins such as dimethyl maleate or fumarate, furnishes mixtures of both η^1 and η^2 derivatives. These findings contrast to the known reactivity of trans-[Pt(H)₂(PCy₃)₂], that gives only η^1 insertion complexes with CO₂, CS₂, C₃O₂ and other olefins such as tetrafluoro- and tetracyanoethylene.

Acknowledgements

This work was supported in part by the Ministero dell'Università e della Ricerca Scientifica e Tecnologica

 $^{^2}$ For a recent review on five-coordinated alkene complexes of Pt see Ref. [27].

(MURST) and by the Consiglio Nazionale delle Ricerche (CNR-Progetto Strategico Materiali Innovativi). The authors wish to thank Dr. R. Bertani for ³¹P NMR spectra and Dr. R. Seraglia for FAB-MS data and are grateful to Professor M. Prato, Professor G. Scorrano and Professor G. Paiaro for helpful discussions.

References

- [1] A. Hirsch, The Chemistry of Fullerenes, Thieme, Stuttgart, 1994.
- [2] F. Diederich, C. Thilgen, Science 271 (1996) 317.
- [3] A.L. Balch, in: R. Taylor (Ed.), The Chemistry of Fullerenes, World Scientific, Singapore, 1995, Chapter 14, p. 220.
- [4] P.J. Fagan, J.C. Calabrese, B. Malone, Science 252 (1991) 1160.
- [5] (a) P.J. Fagan, J.C. Calabrese, B. Malone, J. Am. Chem. Soc. 113 (1991) 9408. (b) A.L. Balch, J.W. Lee, B.C. Noll, M.M. Olmstead, Inorg. Chem. 33 (1994) 5238. (c) F.J. Brady, D.J. Cardin, M. Domin, J. Organomet. Chem. 491 (1995) 169.
- [6] P.J. Fagan, J.C. Calabrese, B. Malone, Acc. Chem. Res. 25 (1992) 134 and references cited therein.
- [7] V.V. Bashilov, P.V. Petrovskii, V.I. Sokolov, S.V. Lindeman, I.A. Guzey, Y.T. Struchkov, Organometallics 12 (1993) 991.
- [8] A.L. Balch, J.W. Lee, B.C. Noll, M.M. Olmstead, Inorg. Chem. 32 (1993) 3577.
- [9] S. Schreiner, T.N. Gallaher, H.K. Parsons, Inorg. Chem. 33 (1994) 3021.
- [10] (a) R.E. Haufler, J. Conceicao, L.P.F. Chibante, Y. Chai, N.E. Byrne, S. Flanagan, M.M. Haley, S.C. O'Brien, C. Pan, Z.X. Xiao, W.E. Billups, M.A. Ciufolini, R.H. Hauge, J.L. Margrave, L.J. Wilson, R.F. Curl, R.E. Smalley, J. Phys. Chem. 94 (1990) 8634. (b) C.C. Henderson, P.A. Cahill, Science 259 (1993) 1885.
- [11] S. Ballenweg, R. Gleiter, W. Krätschmer, Tetrahedron Lett. 34 (1993) 3737.
- [12] A. Immirzi, A. Musco, Inorg. Chim. Acta 22 (1977) L35.

- [13] A. Albinati, A. Musco, G. Carturan, G. Strukul, Inorg. Chim. Acta 18 (1976) 219.
- [14] L. Pandolfo, G. Paiaro, Gazz. Chim. Ital. 120, (1990) 531.
- [15] P. Ganis, G. Paiaro, L. Pandolfo, G. Valle, Gazz. Chim. Ital. 120 (1990) 541.
- [16] G.K. Anderson, H.C. Clark, J.A. Davies, Organometallics 1 (1982) 550.
- [17] H.C. Clark, G. Ferguson, A.B. Goel, E.G. Janzen, H. Ruegger, P.Y. Siew, C.S. Wong, J. Am. Chem. Soc. 108 (1986) 6961.
- [18] A.B. Goel, S. Goel, Inorg. Chim. Acta 65 (1982) L77.
- [19] V.V. Bashilov, B.L. Tumanskii, P.V. Petrovskii, V.I. Sokolov, Russ. Chem. Bull. 43 (1994) 1069.
- [20] (a) G. Paiaro, L. Pandolfo, P. Ganis, G. Valle, Organometallics
 10 (1991) 1527. (b) L. Pandolfo, G. Paiaro, P. Ganis, G. Valle, Inorg. Chim. Acta 210 (1993) 39.
- [21] C.A. Tolman, W.C. Seidel, D.H. Gerlach, J. Am. Chem. Soc. 94 (1972) 2669.
- [22] H.C. Clark, G. Ferguson, M.J. Hampden-Smith, B. Kaitner, H. Ruegger, Polyhedron 7 (1988) 1349.
- [23] T.S. Cameron, H.C. Clark, A. Linden, A.M. Nicholas, Polyhedron 9 (1990) 1683.
- [24] H. Nagashima, Y. Kato, H. Yamaguchi, E. Kimura, T. Kawanishi, M. Kato, Y. Sato, M. Haga, K. Itoh, Chem. Lett. (1994) 1207.
- [25] (a) A. Albinati, G. Carturan, A. Musco, Inorg. Chim. Acta 16 (1976) L3. (b) H.C. Clark, A.B. Goel, C.S. Wong, Inorg. Chim. Acta 34 (1979) 159.
- [26] (a) T. Yoshida, S. Otsuka, J. Am. Chem. Soc. 99 (1977) 2134.
 (b) H.C. Clark, A.B. Goel, C.S. Wong, J. Organomet. Chem. 152 (1978) C45. (c) B.E. Mann, A. Musco, J. Chem. Soc. Dalton Trans. (1980) 776.
- [27] V.G. Albano, G. Natile, A. Panunzi, Coord. Chem. Rev. 133 (1994) 67.
- [28] (a) M. Niyazimbetow, D.H. Evans, S.A. Lerke, P.A. Cahill, C.C. Henderson, J. Phys. Chem. 98 (1994) 13093. (b) P.J. Fagan, P.J. Krusic, D.H. Evans, S.A. Lerke, E. Johnston, J. Am. Chem. Soc. 114 (1992) 9697. (c) P. Timmermann, H.L. Anderson, R. Faust, J.-F. Nierengarten, T. Habicher, P. Seifer, F. Diederich, Tetrahedron 25 (1996) 4925.
- [29] P.S. Pregosin, R.W. Kunz, in: NMR. Basic Principles and Progress, vol. 16, Springer Verlag, 1979.